

PAGE 1 OF 5

MFSA FinSights | Enabling Technologies

Application Programming Interface (API) and Microservices

The financial sector is continuously evolving through the rapid development and adoption of new technologies. The

term ‘FinTech’ generally refers to financial innovation that seek to provide enhanced financial service offerings through

the utilisation of enabling technologies. These generally include Distributed Ledger Technology & Smart Contracts;

Artificial Intelligence, Machine Learning & Big Data, Cloud Computing, Web 3.0, Application Programme Interfaces and

Micro-Services; Robotic Process Automation and the Internet of Things.

As part of the MFSA’s initiatives to generate awareness, drive culture and deliver a cross-sectoral knowledge platform

which can support the MFSA’s functions in preparing for the financial services of tomorrow, these insights will delve

into enabling technologies, enabling innovations and their sectoral applications.

1 What is an API?

The Application Programming Interface (‘API’), which emerged in the 1940s, is programmed code, that governs

access points1 and allows two different applications, systems, or software to communicate with each other, using

a set of common standards. In other words, it facilitates direct database-to-database transmission of data whilst

ensuring granular, real-time reporting with automated validation.

API integration refers to a process where two or more applications communicate with each other and exchange

data via their APIs in order to synchronise data, enhance productivity and/or drive revenue. It is also used for

seamless information/data sharing in many sectors and organisations, without human interaction. This is

especially important for businesses that use cloud-based products and apps and need connected systems for

data exchange between various other software tools.

1.1 Web APIs

Web APIs allow users certain access to data from other applications, upon a submission of a request. The request

is received by the API, whereby it then fetches the data from the back-end and delivers it to the user via the front-

end web application user interface, as depicted in Figure 1. The exchange of data between client and server

through HTTP2, would create a Web API.

1 Access points are a piece of computer equipment that allows connection between computers without wires to share information.
Cambridge University Press (2022)
2 Hypertext Transfer Protocol (‘HTTP’) is a set of instructions made by a computer program that allows your computer to connect to
an internet document. Cambridge University Press (2022)

RESPONSE

REQUEST

WEB

APPLICATION
INTERNET API WEB SERVER DATABASE

FIGURE 1: WEB APIs
Source: Authors’ Own Sources

PAGE 2 OF 5

There are four types of Web APIs which indicate the intended use of the API:

1. Open APIs – also known as public APIs, are a type of Web APIs that are openly available and accessible

on the internet, without any restrictions. Due to easy implementation and lack of restrictions, third parties

may seamlessly leverage the data provided by the API. The use of public APIs has paved way for creation

of open banking services that essentially allow external developers to create programs and services that

facilitate access to certain data held by credit institutions.

2. Partner APIs – refer to Web API types, which are private and often require a prerequisite license or

subscription that can be acquired through a partnership agreement, between a business and a service

provider. Partner APIs often refer to Software as a Service (‘SaaS’) model whereby businesses gain access

to software for a specific purpose and facilitate data sharing via cloud computing.

3. Internal APIs – also known as private APIs and can only be used within an organisation, company,

department. Hence, this type of Web API is responsible for providing access to sensitive information of

the company, such as salary or sales data, to the select team or individuals within the corporate structure.

4. Composite APIs – are a form of Web API that batches multiple API calls in a single request. This increases

efficiency in the passing of data rather than having multiple separate responses. These are often used in

eCommerce sites with final shopping cart API calls being executed all at once.

1.2 API Architectures

In order to develop an API-based application one must first decide on the API architectural style to be used. Such

styles differ in their use cases and specifications, some of the common API architectures are as follows:

− RPC (Remote Procedure Call) – A RPC API is the simplest form of API interaction whereby the client

executes code on another server. The most common RPC languages are JSON, and XML. Whereas the

former is the most commonly used format due to its readability and ease of application, the latter is the

long-standing API format that forms an integral part of every web application.

− SOAP (Simple Object Access Protocol) – SOAP API relies on XML3 for the exchange of messages

between the client and the server. The XML messages are always? made up of four blocks: envelope,

header, body, fault, which serve together in SOAP APIs. This architectural style is more secure than RPC

and handles a higher XML payload as compared to RPC.

− REST (Representational State Transfer) – REST is an API architectural type that relies on a few guiding

principles such as uniform interfaces, stateless operations and a layered system of components that only

interact hierarchically. One may thus deploy APIs on a server whilst having data stored on another server

and rely on a third server for request authentication. Essentially, unlike SOAP, which is based on specific

requirements such as XML messaging, REST is represented by a set of guidelines offering adaptable

implementation.

− GraphQL – may be deemed as a consumer-centric API style having the design flexibility that allows it to

be interoperable with any kind of database. GraphQL provides its clients with control over the data

provided to the API consumer while also allowing them to describe their data requirements in JSON

format. It also allows for faster client request execution by limiting the field to be queried.

3 Extensible Markup Language (XML) is a text-based format that represents structured information such as documents, data,
transactions, invoices, and more.

PAGE 3 OF 5

A summary of API Architectures is provided in the Table 1 below.

 RPC SOAP REST GraphQL

Characteristics Batches calls Strict formatting Uses less bandwidth,

faster

Developer-friendly

Format JSON, XML, and more XML only JSON, XML, HTML,

plain text

JSON

Ease of use Easy Difficult Easy Medium

Use Cases i. Command and

action-oriented APIs

ii. High performance

communication in

massive micro-

services systems

i. Payment gateways

ii. Identity

management

iii. CRM solutions

iv. Financial and

communication

services

v. Legacy system

support

i. Public APIs

ii. Simple resource-

driven applications

i. Micro-services

ii. Complex Systems

iv. Mobile APIs

2 Brief on application of API in Finance

APIs can be utilised in many ways: for example, in finance a centralised API may be utilised to identify and

authenticate the users of privately and publicly administered open finance solutions. An in-depth analysis on Open

Finance and APIs is presented in the BIS (2020) API scheme4. The report outlines that an open and standardised

API scheme can facilitate interoperability for all entities participating in the open finance ecosystem. In particular,

a central validator (‘CV’) is established and acts as an intermediary between financial institutions and third parties

thereby eliminating any direct contact between them. In addition to ensuring that only necessary user information

is received by the third parties that is sufficient for the transaction to occur, the CV also validates the requests

received from the network by having all the involved parties certified.

In order for connections to occur in open finance it is vital that every user can be securely, efficiently, and remotely

verified and authenticated. Such connections can be achieved through API providers like ‘Plaid’ that act as

intermediaries between other financial apps and banks. Plaid provides information like bank balances securely to

the app user, through their APIs via their seamless JSON requests. Additionally, APIs may not only be beneficial

for data sharing but also for payment gateways, investment management and identity verification. Solutions like

Addepar facilitate investment management for firms and advisors in the financial sector whilst others such as

Trulioo ensure banks and financial institutions are KYC and AML compliant by providing API gateways for

seamless identity verification.

4 Further information on the analysed API scheme can be found in the BIS Paper “Enabling open finance through APIs”, found here.

TABLE 2: API Architectures
Source: Comparing API Architectural Styles (2020)

https://www.bis.org/publ/othp36.htm

PAGE 4 OF 5

3 Microservices

API-based architecture allows for creation of an ecosystem of applications that are modular and reusable — which

makes it ideal for microservices. Essentially, a microservice is a piece of software that exists within a larger

application and performs a single, independent task, thus maintained separately and replaceable. Microservices

break an application apart into packaged business capabilities (PBCs), connected via APIs. Microservices and

APIs can be used complementary to each other whilst also operate independently from one another.

In practice, combining the described concepts together give rise to microservice-based application architecture.

The development of a payment processing service encompasses many different functions/services that form part

of the application. Such functions may include circulation of e-mails; contacting banks; executing transaction;

reading, updating, and inserting information into a database. Although, all the listed services work independently,

eventually they would all need an API to effectively communicate with each other. Also, other processes such as

the creation and update of invoices, customer information and charges, may need to be independently called upon,

without any human intervention.

Credit and other financial institutions may find it simpler to scale their software solutions by using a microservice

architecture particularly because such ‘applications are built as a suite of services, each running its own processes

and communications’ (Deloitte, 2020). Financial institutions may use cloud platforms and other facilities to

improve scalability whilst also leveraging the architecture of microservices to improve their own services

internally; without having to restructure their entire software framework. The architecture of microservices may

also benefit financial institutions in compliance, if such matters are encountered, they can be addressed

separately without impacting the entire system.

4 Benefits and Risks

When evaluating new technology, benefits over the existing system are often revolutionary. However, it is vital to

have a clear understanding and assessment of the risks before integrating innovation in business operations.

Below is a non-exhaustive list of benefits and risk related to APIs and Microservices.

B
E

N
E

F
IT

S
 Accessibility – Through APIs, applications and system components can communicate with each other

on the Internet and in internal networks, making applications and services accessible for customers and

partners.

Automation and Efficiency – APIs, as an emerging technology, can be used in a range of businesses,

both internally and externally without human intervention, increasing productivity through their efficiency,

seamless data sharing, and automation of existing systems.

Integration – A smooth and integrated user experience can be facilitated via APIs, which makes it

possible for content to be interwoven and embedded in websites and applications, easily and comfortably

accessible to the user.

Modularity and Cost Saving – Usage of APIs reduce costs, since developers can rely on third-party

providers or internal APIs and focus their development efforts on other matters

Future-Ready – APIs can help support the adaptation process. Data Migration, data quality review and

clean-up are being improved. API possess flexibility in providing services that are beneficial when an

application has to be repurposed for an unanticipated use.

PAGE 5 OF 5

Flexibility – Microservice architecture5 allows for changes to be made in a microservice without

influencing the entire application, essentially replacing only what is necessary. Developers have

consequently more flexibility to create lean, performant applications, in separate teams.

Threat Isolation – Since microservices are independent, threat isolation and bug fixes can be easily

managed, without disrupting whole applications or services.

R
IS

K
S

 Security – Data breaches present instances of API vulnerabilities which may lead to significant exposure

of personal information, as was the case in the infamous Cambridge Analytica breach. Outdated APIs

also present security risks of exploits over accounts and transactions.

Transparency – The build and implementation of the APIs is well-documented, which can give clues to

criminal entities how to access internal databases, for example. Hackers can use the public information

of the APIs, as points of entry to exploit applications.

Coding Bugs – Errors in code can have severe ramifications, with APIs providing sensitive information,

such as passwords, personal information or other login data to malicious users.

Congestion – Constant API communication between microservices can cause a build-up of calls which

may halt entire networks at times.

Compatibility – With constant updates to different microservices, users may have trouble with intra

service compatibility.

To conclude, APIs and microservices have a wide variety of use cases, especially in functions related to business

and finance. API technologies, although not risk-free, present a clear vision of efficient information sharing and

continue to improve efficiency and automation within financial services.

 Supplementary Reads…

Matt Hawkins (2020), The History and Rise of APIs. Forbes Technology Council. Available online.

Bank of International Settlements (BIS) (2020), Enabling open finance through APIs. Report by the

Consultative Group on Innovation and the Digital Economy (CGIDE). Available online.

Microsoft Azure, Microservice architectural style. Available online.

Deloitte (2020), Open Banking through architecture re-engineering: A microservices based roadmap.

Available online.

Altexsoft (2020), Comparing API Architectural Styles: SOAP vs REST vs GraphQL vs RPC. Available

online.

Check our other FinSights and should you have any queries or wish to discuss your ideas within the context of our MFSA Fintech

Regulatory Sandbox, contact us at fintech@mfsa.mt.

5 Microservice architectural style is a microservice architecture consisting of small, autonomous services

https://www.forbes.com/sites/forbestechcouncil/2020/06/23/the-history-and-rise-of-apis/?sh=3699aee445c2
https://www.bis.org/publ/othp36.htm
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-enabling-platform-banking-pov.pdf
https://www.altexsoft.com/blog/soap-vs-rest-vs-graphql-vs-rpc/
https://www.mfsa.mt/fintech/regulatory-sandbox/
https://www.mfsa.mt/fintech/regulatory-sandbox/
mailto:fintech@mfsa.mt

