Security Concerns and
Vulnerabilities in Blockchain
Systems

Prof. Gordon Pace
Malta Digital Innovation Authority
September 2019

Security Concerns and Vulnerabilities in
Blockchain Systems

 Security concerns at the blockchain layer:
* blockchain node bugs

 consensus algorithms and vulnerabilities (50%+1 attack, forking, rejected blocks).

* Security concerns at the smart contract logic layer:
* bugs and vulnerabilities in the smart contract logic;
* malicious code;
* vulnerabilities at the blockchain level (e.g. transaction ordering)

* Security concemns at the edge of the blockchain:

* traditional vulnerabilities through off-chain access of blockchain and smart contract
* human factors in security concerns.

Security Concerns and Vulnerabilities in

Blockchain Systems
* Security ¢

* blockc Undesirable human behaviour

* conse using expected application functionality ted blocks).
 Security VS.

* bugs a Undesirable human behaviour

* malici due to unexpected application functionality
e vulner
 Security C
 traditional vulnera oh off-chain access of blockchain and smart contract

* human factors in security concerns.

Security Concerns and Vulnerabilities in
Blockchain Systems

* Security ¢
* blockc
* conse

 Security
* bugs a Undesirable human behaviour

* malici due to unexpected application functionality
 vulner

 Security C

 traditional vulnera oh off-chain access of blockchain and smart contract
* human factors in security concerns.

Backend

database Backend Browser and

and . st n Frontend . device systems
underlying

systems

Traditional systems

Vulnerabilities Bugs or Bugs or Bugs or
in system vulnerabilities | vulnerabilities vulnerabilities
software in scripts in frontend in device

Backend
database

Backend Browser and

and . st n Frontend . device systems
underlying

systems

Traditional systems | rnenco umer

security
change user

vulnerabilities activity weaknesses

Backend

database Backend Browser and

and . st n Frontend . device systems
underlying

systems

Traditional systems

DLT code

handling
native Smart Browser and

) Frontend :
transactions contracts . device systems

and smart contract -
execution

Decentralised systems

Vulnerabilities Bugs or . Bugs or Bugs or
: q vulnerabilities . .
in DLT node S | vulnerabilities vulnerabilities
software — in frontend in device

DLT code
handling

native Smart Frontend Browser and
transactions contracts . device systems

and smart contract -
execution

Decentralised systems | ronenc o Human

h security

change user

g. . weaknesses
activity

DLT code
handling
native Smart

transactions contracts
and smart contract
execution

DLT code
handling
native

transactions
and smart contract
execution

Smart
contracts

execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

DLT code

handling DLT code
native handling
transactions native Smart
and smart contract transactions contracts
execution and smart contract
" execution

DLT code
handling
native
transactions
and smart cont
execution

execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

DLT code

handling DLT code
native handling
transactions native Smart
and smart contract transactions contracts
execution and smart contract
" execution

DLT code
handling
native
transactions
and smart cont
execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

Consensus algorithm

Consensus algorithm

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

DLT code
handling
native Smart Consensus algorithm
transactions contracts
and smart contract
execution

Consensus algorithm

DLT code
handling DLT code
native Smart handling
transactions contracts native Smart
and smart contract transactions contracts
execution and smart contract
execution

Consensus algorithm

Consensus algorithm
DLT code

handling
native
transactions
and smart cont
execution

DLT code
handling
native Smart
transactions contracts
and smart contract
execution

Consensus algorithm

Vulnerabilities
in DLT node
software

DLT code
handling

native
transactions

Bugs or
vulnerabilities
in smart
contracts

Smart
contracts

Bugs or
vulnerabilities
in frontend

Bugs or
vulnerabilities
in device

Browser and

Frontend . device systems

and smart contract -
execution

Consensus algorithm

Spoofing Human
f:‘ontend to security
C ang.e.user weaknesses
activity

Vulnerabilities
in DLT node
software

Bugs or
vulnerabilities
in smart
contracts

Bugs or
vulnerabilities
in frontend

Bugs or
vulnerabilities
in device

DLT code
handling

native Smart Frontend Browser and
rOREEN . device systems

and smart contract -
execution

transactions contracts

Consensus algorithm

Spoofing Human
frontend to '
securit
Consgnsus change user weaknesZes
algorithm activity
vulnerabilities

Bugs or Bugs or
vulnerabilities vulnerabilities
in frontend in device

Browser and

Frontend . device systems

Spoofing Human
f:‘ontend to security
C ang.e_user weaknesses
activity

Bugs or Bugs or

Traditional Vulnerabilities vulnerabilities vulnerabilities

in frontend in device

1. Human weaknesses
* Passwords/keys ‘on a post-it

note’
* Phishing |
]]] | Browser and
* Social engineering ; Frontend . device systems
* Rubber-hose cryptanalysis T

/

Spoofing Human
fLontend to security
C ang.e_user weaknesses
activity

Responsibility: Users.

Traditional Vulnerabilities

2. Platform vuinerabilities
* Due to bugs on the
device/browser/operating
system/platform.
* Regular updates required to
be carried out

Responsibility: Users.

Bugs or
vulnerabilities
in frontend

Frontend

Spoofing
frontend to
change user

activity

Bugs or
vulnerabilities
in device

Browser and

. device systems

/

Human
security
weaknesses

Bugs or Bugs or

Traditional Vulnerabilities vulnerabilities vulnerabilities

in frontend in device

3. Front-end vulnerabilities
 The responsibility of the
developers (of the front end),
not the users.

Browser and

* Traditional security measures. Frontend . device systems
e Handled through code B
analysis, penetration testing,)
etc.)
Spoofing R
frontend to security
change user weaknesses
activity

Responsibility: Developers of front-end.

Vulnerabilities HUE or
vulnerabilities

in DLT node b ~ Blockchain-Side Vulnerabilities

software

contracts

DLT code
handling
native Smart
transactions contracts

and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Sender Receiver

| -
[
=
Q
O
Q
o

Blockchain-side

Sender Receiver

Blockchain-side

Memory pool of
transactions

transaction 1

transaction 2

transaction n

Sender Receiver

Blockchain-side

Memory pool of

transactions Previous blockchain transactions

transaction 1

Block O Block 1 Block 2 a1 Block 234

transaction 1 of block 234

transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2

transaction 2 of block 234

transaction 13 of block 234

transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2

transaction n

block reward block reward block reward block reward

1
1
1
1
1
1
1
1
1
1
1
) 1
transaction 2 : transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2
1
1
1
1
1
1
1
1
1
1
1
1

Anatomy of a block

23 Block 74

transaction 1 of block 74

transaction 2 of block 74

transaction 29 of block 74

block reward

Anatomy of a block

Block number

23 Block 74 e

transaction 1 of block 74

transaction 2 of block 74

transaction 29 of block 74

block reward

Anatomy of a block

23 Block 74

transaction 1 of block 74

transaction 2 of block 74

transaction 29 of block 74

block reward

Block number

A number of transactions

A each signed by the sender

Anatomy of a block

Block number

23 /
BIOCk 74 A number of transactions

A each signed by the sender

transaction 1 of block 74

transaction 2 of block 74 .

transaction 29 of block 74

block reward

Block reward for miner
who added the block

Anatomy of a block

Block number

23 /
BIOCk 74 A number of transactions

A each signed by the sender

transaction 1 of block 74

transaction 2 of block 74 .

transaction 29 of block 74

block reward

Block reward for miner

/ who added the block

The hash of the previous block
(including the hash written there)

Anatomy of a block

Block number

23 Block 74 —

A number of transactions

. B each signed by the sender
A nonce - an arbitrary value chosen by transaction 1 of block 74 8 y
the miner such that the hash of the
block is less than some constant value transaction 2 of block 74 >
transaction 29 of block 74
7
block reward
/ Block reward for miner
who added the block

The hash of the previous block
(including the hash written there)

Sender Receiver

Blockchain-side

Memory pool of

transactions Previous blockchain transactions

transaction 1

Block O Block 1 Block 2 a1 Block 234

transaction 1 of block 234

transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2

transaction 2 of block 234

transaction 13 of block 234

transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2

transaction n

block reward block reward block reward block reward

1
1
1
1
1
1
1
1
1
1
1
) 1
transaction 2 : transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2
1
1
1
1
1
1
1
1
1
1
1
1

Sender Receiver

Blockchain-side

Memory pool of

transactions Previous blockchain transactions

transaction 1

Block 0 Block 1 Block 2 2 Block 234

transaction 1 of block 234

transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2

transaction 2 of block 234

transaction 13 of block 234

transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2

transaction n

block reward block reward block reward block reward

transaction n+1

1
1
1
1
1
1
1
1
1
1
1
) 1
transaction 2 : transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2
1
1
1
1
1
1
1
1
1
1
1
1

Miner

Blockchain-side

Memory pool of

transactions Previous blockchain transactions

transaction 1

Block 0 Block 1 Block 2 2 Block 234

transaction 1 of block 234

transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2

transaction 2 of block 234

transaction 13 of block 234

transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2

transaction n

block reward block reward block reward block reward

transaction n+1

1
1
1
1
1
1
1
1
1
1
1
) 1
transaction 2 : transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2
1
1
1
1
1
1
1
1
1
1
1
1

Miner

Blockchain-side

Memory pool of

transactions Previous blockchain transactions

transaction 1 15 Block 0 31 Block 1

transaction 2 of block 0 transaction 2 of block 1

transaction 12 of block 0 transaction 17 of block 1

transaction n

block reward block reward

1

1

1

1

1

1

1

1

1

1

1

1
transaction 2 : transaction 1 of block 0 transaction 1 of block 1

1

1

1

1

1

1

1

1

. 1

transaction n+1 !

1

9 Block 2

transaction 1 of block 2

transaction 2 of block 2

transaction 4 of block 2

block reward

1. Choose some pending
transactions.

2 Block 234

transaction 1 of block 234

transaction 2 of block 234

transaction 13 of block 234

block reward

__

1. Choose some pending
transactions.

Miner transaction 2

transaction 5

transaction 29

transaction n+1

Blockchain-side

__

Memory pool of

! 1
! 1
! 1
. 1 . . . |
transactions + Previous blockchain transactions |
! 1
! 1

Q 1
transaction 1 M - Blocko0 1 Block 1 s Block 2 s Block 234 :
1
. ! 1
transaction 2 : transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2 transaction 1 of block 234 :
: transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2 transaction 2 of block 234 :
1 |
) : transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2 transaction 13 of block 234 :
transaction n : block reward block reward block reward block reward :
! 1

. 1
transaction n+1 : oo :
] i

Miner transaction 2

transaction 5

transaction 29

transaction n+1

hash of
block 234

Blockchain-side

Memory pool of

transactions Previous blockchain transactions

transaction 1

15 Block O 31 Block 1

transaction 1 of block 0 transaction 1 of block 1

transaction 2 of block 0 transaction 2 of block 1

transaction 17 of block 1

transaction 12 of block 0

transaction n

block reward block reward

transaction n+1

I
I
I
I
I
I
I
I
I
I
I
I
transaction 2 :
I
I
I
I
I
I
I
I
I
I
I
I

Block 235

transaction 2

transaction 5

transaction n+1

block reward

9 Block 2

transaction 1 of block 2

transaction 2 of block 2

transaction 4 of block 2

block reward

1. Choose some pending

transactions.

2. Puttheminanew

block.

2 Block 234

transaction 1 of block 234

transaction 2 of block 234

transaction 13 of block 234

block reward

__

2 Block 235 1. Choose some pending
transactions.

2. Putthemin anew
block.

Miner transaction 2

transaction 5 transaction 2

transaction 5

transaction 29

di : transaction n+1 3. Find a nonce such that
transaction n+ i
block reward hash of the block is less
hash of
block 234 than N.

Blockchain-side

__

Memory pool of

transactions Previous blockchain transactions

transaction 1

15 Block O 31 Block 1 9 Block 2 a1 Block 234

transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2

transaction 2 of block 234

transaction 13 of block 234

transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2

transaction n

block reward block reward block reward block reward

transaction n+1

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
. ! 1
transaction 2 : transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2 transaction 1 of block 234 :
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

2 Block 235 1. Choose some pending
transactions.

2. Putthemin anew
block.

Miner transaction 2

transaction 5 transaction 2

transaction 5

transaction 29

: transaction n+1 3. Find a nonce such that
transaction n+ i
block reward hash of the block is less
hash of
block 234 than N.

4. Broadcast the solution.

Blockchain-side

__

Memory pool of

transactions Previous blockchain transactions

transaction 1

15 Block O 31 Block 1 9 Block 2 a1 Block 234 32 Block 235

transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2

transaction 2 of block 234 transaction 2 of block 235

transaction 13 of block 234 transaction 19 of block 235

transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2

transaction n

block reward block reward block reward block reward block reward

1
1
1
1
1
1
1
1
1
1
1
1
: transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2
1
1
1
1
1
1
1
1
X e
1

1

1
1
1
1
1
1
1
1
1
1
1
1
transaction 1 of block 234 transaction 1 of block 235 :
1
1
1
1
1
1
1
1
1
1
1
1

What if two miners find a solution at the same time?

Some nodes will adopt one solution, others the other.

As soon as one is extended further, that is preferred (longest chain
wins).

Blockchain-side

__

Memory pool of
transactions

Previous blockchain transactions

transaction 1

15 Block O 31 Block 1 9 Block 2 a1 Block 234 32 Block 235

transaction 2 of block 0 transaction 2 of block 1 transaction 2 of block 2

transaction 2 of block 234 transaction 2 of block 235

transaction 13 of block 234 transaction 19 of block 235

transaction 12 of block 0 transaction 17 of block 1 transaction 4 of block 2

transaction n

block reward block reward block reward block reward block reward

1
1
1
1
1
1
1
1
1
1
1
1
: transaction 1 of block 0 transaction 1 of block 1 transaction 1 of block 2
1
1
1
1
1
1
1
1
X e
1

1

1
1
1
1
1
1
1
1
1
1
1
1
transaction 1 of block 234 transaction 1 of block 235 :
1
1
1
1
1
1
1
1
1
1
1
1

__

Vulnerabilities HUE or
vulnerabilities

in DLT node b ~ Blockchain-Side Vulnerabilities

software

contracts

DLT code
handling
native Smart
transactions contracts

and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Vulnerabilities | Bugsbﬁ-rt.
. vuineraplilities - " " mgugm
n DIT node et Blockchain-Side Vulnerabilities
sortware |
contracts

4. DLT node vulnerabilities
 DLT node handles communication
and protocol to ensure immutability,

DLT code .
handling | fairness, etc.

native Smart f * Such vulnerabilities can also be due

transactions contracts |) i :
and smart contract to constituent parts e.g. libraries
execution used.
| * (Surprisingly) rare instances.

Consensus

algorithm
vulnerabilities

Responsibility: DLT developers.

Vulnerabilities I Bugsbﬁ.rt.
- vulnerabilities ; . " ngug s
n DIT node et | Blockchain-Side Vulnerabilities
contracts

5. Consensus algorithm vulnerabilities
* Selfish mining by not sharing found
blocks immediately.

DLT code " . .
handling | * Network attacks aiming at disrupting or
native Smart s manipulating connectivity between
transactions CONEracts ’ nodes at connection time or later on.
and smart contract ;]]] o
execution * DDOS attacks disrupting miner activity

by flooding with micro-transactions or

Consensus algorithm the memory pool of transactions.
* 51% attack aiming at taking over the

network.

Consensus
algorithm

vulnerabilities Responsibility: Consensus protocol designers.

Vulnerabilities Blgs or _
in DLT node vulnerabiies ~ Blockchain-Side Vulnerabilities
software N smart
contracts |
51% attacks
* Power to prevent transactions from
ST code taking place.
handling * Power to ‘reverse’ transactions -
native Smart : H
transactions contracts dOUbIe Spendlng.
and smart contract Power to fork the network.
SXECHEON ' * Power to prevent others from finding
blocks.
Consensus
algorithm
vulnerabilities

Vulnerabilities I Bugsbﬁ-rt.
. vuineraplilities - " " mgugm
n DIT node et Blockchain-Side Vulnerabilities
sortware |
contracts |

51% attacks
 |t's even worse than it sounds:
* Owning 51% for a short period of

DLT code |]]
handling time suffices for many attacks.
native >mart f « Hash power can be rented.
transactions contracts | _
and smart contract * Some attacks have high chance

execution

of success even with less than
50% of network computational

Consensus
algorithm
vulnerabilities

Bugs or
vulnerabilities

el ~ Blockchain-Side Vulnerabilities

contracts

Vulnerabilities
in DLT node
software

6. Smart contract vulnerabilities
* Bugs and deviations from intended

functionality.
DLT code | .
handling * Platform or programming language
native >mart ? vulnerabilities.
transactions contracts '

and smart contract Malicious code.

execution

Consensus
algorithm L _
vulnerabilities Responsibility: Designers and developers of smart
contracts.

Vulnerabilities | Bugsbﬁ.rt.
. vuineraplilities - " " mgugm
n DIT node S Blockchain-Side Vulnerabilities
sortware |
contracts

Smart contract vulnerabilities
Bugs and deviations from intended
functionality.

DLT code
handling
native Smart

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Vulnerabilities I Bugsbﬁ.rt.
. vuinerapllities - " n mgugm
" oL node o emart Blockchain-Side Vulnerabilities
software :
contracts

Smart contract vulnerabilities
Bugs and deviations from intended

functionality.
DLT code
handling |
native >mart f Have you ever used software that worked
transactions contracts ;
and smart contract perfectly?

execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Bugs or
vulnerabilities
in smart
contracts

Vulnerabilities
in DLT node
software

Blockchain-Side Vulnerabilities

Smart contract vulnerabilities
Bugs and deviations from intended

functionality.
DLT code
handling |
native >mart f Have you ever used software that worked
transactions contracts |
and smart contract perfectly? Even worse...
SXCCHHON Critical nature of smart contracts should

require experienced software engineers

using robust engineering practices...

Consensus
algorithm
vulnerabilities

Vulnerabilities eles or
vulnerabilities

in DLT node o ~ Blockchain-Side Vulnerabilities

software

contracts

Smart contract vulnerabilities
Bugs and deviations from intended
functionality.

DLT code
handling

native Smart Have you ever used software that worked

transactions contracts |
and smart contract perfectly? Even worse...
St ' Critical nature of smart contracts should

require experienced software engineers
using robust engineering practices...
But small size of smart contracts means

Consensus many are developed by inexperienced

algorithm

vulnerabilities programmers.

Bugs or
vulnerabilities

Vulnerabilities
in DLT node

e Vulnerabilities

nerabilities
\s from intended

_ames rtcontracts should
oymecom =25 st oftware engineers
. s 10"l 370 ng practices...

" «comall'size of smart contracts means
many are developed by inexperienced

programmers.

algorith _.
vulnerabilities

Bugs or
vulnerabilities

Vulnerabilities
in DLT node
software

38 coindest

e Vulnerabilities

Technology

B\ockcha'\n 101

) nerabilities
e S =n+nnded

Internatiq,
he edition fal
di

rked

ould

S contro] of py IEEers
I, destroying Rdr eds of wy] . .
ngto
S
sW —ul.?mall [© [neans
\ty yulner

cTnsgP; ere potentid many are developed by inexperienced
algorith . |
programmers.

vulnerabilities

\ Bugs or
v .Inor:hilifiPS

$273.478 Gy $50.918 () $2.778 (§)

'e Vulnerabilities

Vulnerabilities
in DLT node
software

CRYPTOSLATE TRENDING NEWS colns DIRECTORY pLACES

EOS DApp Smart Contract Exploit Pays Out $200K to

Hacker rked

:z Sam Town - Sep 16,2018 - 1min read

Smart contract Weaknesses in EOS-based gambling dApp EOBet have allowed hackers to manipulate the ly IOUId
outcome of blockchain dice rolls, capturing 126,000 EQS in just 36 hours. |eers
An official announcement from EOSBet explains the mannerin which the attack Wwas executed—by g
exploiting a flaw in smart contract code, the hacker was able to place bets without transferring EOS to the nea nS
contract, while stil| capturing payouts from successful predictions,
= nenced
Consent ~werepos- e — | e
algorith . programmers.
vulnerabilities

Vulnerabilities I Bugsbﬁ.rt.
. vuinerapllities - " n mgugm
" oL node o emart Blockchain-Side Vulnerabilities
software :
contracts

Smart contract vulnerabilities
Platform or programming language

vulnerabilities.
DLT code

handling
native Smart

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Vulnerabilities I Bugsbﬁ.rt.
. vuinerapllities - " n mgugm
" oL node o emart Blockchain-Side Vulnerabilities
software :
contracts

Smart contract vulnerabilities
Platform or programming language

vulnerabilities.
DLT code

handling |
native Sl The tools should deter, not foster mistakes.

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Vulnerabilities | Bugsbﬁ.rt.
. vuineraplilities - " " mgugm
n DIT node S Blockchain-Side Vulnerabilities
sortware |
contracts

Smart contract vulnerabilities
Platform or programming language

vulnerabilities.
DLT code
handling |
e e | The tools should deter, not foster mistakes.
transactions contracts |
and smart contract :
eXecution Alas, few smart contract platforms and

programming languages have been

developed by the right experts.

Consensus
algorithm
vulnerabilities

Vulnerabilities
in DLT node
software

DLT code
handling
native
transactions
and smart contract
execution

Consensus
algorithm
vulnerabilities

Vu

Bugs or |
B8 o... 7 hein-Side Vulnerabilities

N E WS Shop = Reel Travel

Home Video

World UK Business Tech

Science Stories Entertaj
rtainment & Art u a e
Technology s g g

Hack attack drains

start-up invest |
m .
fund ent o ster mistakes.
O 21 June 2016
atforms and
ave been
arts.

Vulnerabilities eles or
vulnerabilities

in DLT node b ~ Blockchain-Side Vulnerabilities

software

contracts

Smart contract vulnerabilities
Malicious code.

DLT code
handling
native Smart
transactions contracts

and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Vulnerabilities | Bugsbﬁ.rt.
. vuineraplilities - " " mgugm
n DIT node S Blockchain-Side Vulnerabilities
sortware |
contracts |

Smart contract vulnerabilities
Malicious code.
DLT code | i .
handling Purposefully introducing obfuscated means
hative Smart ’ of achieving unexpected behavior.

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Vulnerabilities | Bugsbﬁ.rt.
. vuineraplilities - " " mgugm
n DIT node S Blockchain-Side Vulnerabilities
sortware |
contracts |

Smart contract vulnerabilities

Malicious code.
DLT code | . .
handling Purposefully introducing obfuscated means
native >mart f of achieving unexpected behavior.
transactions contracts ;
and smart contract '
EXCCHEON Treat the developer as an adversary, not an
ally.
Consensus
algorithm
vulnerabilities

Vulnerabilities HUE or
vulnerabilities

in DLT node b ~ Blockchain-Side Vulnerabilities

software

contracts

Hybrid Vulnerabilities

DLT code
handling
native Smart
transactions contracts

and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Bugs or
vulnerabilities

el ~ Blockchain-Side Vulnerabilities

contracts

Vulnerabilities
in DLT node
software

1. Node software vulnerabilities
* Taking down nodes through known
oIt code . vulnerabilities to perform 51%
handling attack.

native Smart

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Responsibility: DLT developers and miners.

Vulnerabilities Bugs or |
in DLT node vulnerabilities |
software in smart BI In-Si HTH T
insmart ockchain-Side Vulnerabilities
\ \ = ALI_ &= -

N P AW

Unpatched Ethereum Clients Pose 51%
Attack Risk, Says Report

of the network becomes easier.
unlike in other pieces

of nodes, controlling 51%
security concern for blockchain nodes (

benefit from a crash).”

“|If a hacker can crash a large number
e crashes are a serious

Hence, softwar
es not usually

of software where the hacker do

——
Consensus
algorithm

vulnerabilities

Responsibility: DLT developers and miners.

Bugs or
vulnerabilities

el ~ Blockchain-Side Vulnerabilities

contracts

Vulnerabilities
in DLT node
software

8. Smart contracts and consensus
* Transaction reordering

vulnerabilities.
DLT code

handling
native Smart

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Responsibility: Smart contract designers.

I
Vulnerabilities

| —— A_--l.u:a.:.\s
in DLT node Tl-

software ‘

F— or

The crypto world's latest hack sees |
Bancor lose $23.5M

Jon Russell @jonrussell / 9:31 am CEST July 10, 2018

E] Comment

transactif
and smart cq

- Bancor, a Crypto company that touts a decentralized exchange Service, ‘

has lost some $23 5 million of Cryptocurrency tokens belonging to its

users following a hack.
Con!

algorithm . . —
vulnerabilities

Cr——

Responsibility: Smart contract designers.

I
Vulnerabilities:

in DLT noc The
software This standard has a pot

due to the approve(fun

|
e well-known for bu

| frontrunning vuln
nat

- V——
ERC20 standard is quit
entia
ction. A good expla

found here.

The standard specifies the approve() function

ddress _spendeXy uint

function approve(a

handlin

native
ction allows @ usertop

ermit other users to tra

ilding tokens on Ethereum.
erability which comes about

f this yulnerability can be e

- ShtAs
lﬂs

|

jon 0

as:

256 _value) returns (bool success)

nsfer tokens on their
o when a usef,

—’ UO"”‘!CH?

L This fun
and smart cd pehalf. The frontrunning vulnerability comes in the scenari
Alice, approves her friend, Bob to spend 100 tokens. Alice later decides that
she wants t0 revoke Bob's approval to spend 100 tokens, SO she creates @
to 50 tokens. Bob, who has been ‘

at sets Bob's allocation

transaction th
s this

transaction and b

uilds a transaction of

- carefully watching the chain, see€
his own spending the 100 tokens. He puis a higher gasPrice on his transaction
—i than Alice's and gets his transaction pr’\or’\t'\sed over hers. Some
Con! implementations of approveO would allow Bob to transfer his 100 tokens, rv iCe, ‘
algoritht then when Alice's transaction gets committed, resets Bob's approval to 50 |its
vulnerabili tokens, in offect giving Bob access 10 150 tokens. The mitigation strategies of
' - |

R —
esponsibility: Smart contract designers

And this is but the tip of the iceberg...

e Various other known attack possibilities over the
configurations shown.

* And these are but a subset of configurations...

(V5]
No]
2 5
T
o >
2 o
z S
s S
N o
©

Frontend

Qo
T & £

© >
2 08¢
O C ¢
0 5 =

systems

Frontend

DLT code
handling
native
transactions
and smart
contract
execution

Browser and
device systems

Smart
contracts

Backend

database Backend

scripts

and
underlying
systems

Browser and
device systems

Frontend

DLT code
handling
native
transactions
and smart
contract
execution

Smart
contracts

©
c
©
—
]
(%2
3
o)
| .
2]

device systems

Frontend

DLT code
handling

Backend
database

transactions

server

and
underlying

contracts

and smart

contract

systems

execution

S
=
=

—

o
00

©

%)

>

0

c

Q

0

c

o
O

And this is but the tip of the iceberg...

e Various other known attack possibilities over the
configurations shown.

* And these are but a subset of configurations...
* So what can we do to address these risks?

Malta Digital Innovation Authority
Increasing User Trust and Protection in DLTs

* Independent Systems Audit approach being taken by the
Malta Digital Innovation Authority.

* DLTs and smart contracts may be registered with the MDIA.

Blueprint

Systems Auditor Functionality
Applicant Systems Auditor Report MDIA Certification

Application

Malta Digital Innovation Authority
Increasing User Trust and Protection in DLTs

* The MDIA does not evaluate the technology itself, but rather licenses Systems
Auditors who can do so.

* Theirrole is to apply due diligence to the technology, ensuring that:
* Appropriate system design and architecture
* Experience and processes in the development team
* Appropriate security measures in place
* Appropriate quality assurance processes
 The software really functions as documented in the blueprint
* Appropriate measures in place as required by the law and MDIA

 Subject matter experts appointed by the SAs sign off each report section, with a
concrete opinion about the ITA.

Malta Digital Innovation Authority
Increasing User Trust and Protection in DLTs

* Certified Innovative Technology Arrangements provide higher levels
of assurance:
* The claimed functionality is documented in the blueprint in English.
 Applicant due diligence will be carried out by MDIA.
* Technical due diligence provided by Systems Auditor’s report.
* |ldentifiable known legal entity (the applicant) who can be held liable.
* Information is stored on a Forensic Node in case investigation is required.

* There is some degree of power-of-intervention which may be requested
from a Technical Administrator.

* English description in the blueprint prevails over implementation.

Malta Digital Innovation
Authority

www.mdia.gov.mt

gordon.pace@um.edu.mt

