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Security Concerns and Vulnerabilities in
Blockchain Systems

 Security concerns at the blockchain layer:
* blockchain node bugs

 consensus algorithms and vulnerabilities (50%+1 attack, forking, rejected blocks).

* Security concerns at the smart contract logic layer:
* bugs and vulnerabilities in the smart contract logic;
* malicious code;
* vulnerabilities at the blockchain level (e.g. transaction ordering)

* Security concemns at the edge of the blockchain:

* traditional vulnerabilities through off-chain access of blockchain and smart contract
* human factors in security concerns.
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1. Human weaknesses
* Passwords/keys ‘on a post-it

note’
* Phishing |
] ] ] | Browser and
* Social engineering ; Frontend . device systems
* Rubber-hose cryptanalysis T

/
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Responsibility: Users.



Traditional Vulnerabilities

2. Platform vuinerabilities
* Due to bugs on the
device/browser/operating
system/platform.
* Regular updates required to
be carried out

Responsibility: Users.
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3. Front-end vulnerabilities
 The responsibility of the
developers (of the front end),
not the users.

Browser and

* Traditional security measures. Frontend . device systems
e Handled through code B
analysis, penetration testing, )
etc. )
Spoofing R
frontend to security
change user weaknesses
activity

Responsibility: Developers of front-end.
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What if two miners find a solution at the same time?

Some nodes will adopt one solution, others the other.

As soon as one is extended further, that is preferred (longest chain
wins).
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4. DLT node vulnerabilities
 DLT node handles communication
and protocol to ensure immutability,

DLT code .
handling | fairness, etc.

native Smart f * Such vulnerabilities can also be due

transactions contracts | ) i :
and smart contract to constituent parts e.g. libraries
execution used.
| * (Surprisingly) rare instances.

Consensus

algorithm
vulnerabilities

Responsibility: DLT developers.




Vulnerabilities I Bugsbﬁ.rt.
- vulnerabilities ; . " ngug s
n DIT node et | Blockchain-Side Vulnerabilities
contracts

5. Consensus algorithm vulnerabilities
* Selfish mining by not sharing found
blocks immediately.

DLT code " . .
handling | * Network attacks aiming at disrupting or
native Smart s manipulating connectivity between
transactions CONEracts ’ nodes at connection time or later on.
and smart contract ; ] ] ] o
execution * DDOS attacks disrupting miner activity

by flooding with micro-transactions or

Consensus algorithm the memory pool of transactions.
* 51% attack aiming at taking over the

network.

Consensus
algorithm

vulnerabilities Responsibility: Consensus protocol designers.
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contracts |
51% attacks
* Power to prevent transactions from
ST code taking place.
handling * Power to ‘reverse’ transactions -
native Smart : H
transactions contracts dOUbIe Spendlng.
and smart contract  Power to fork the network.
SXECHEON ' * Power to prevent others from finding
blocks.
Consensus
algorithm
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51% attacks
 |t's even worse than it sounds:
* Owning 51% for a short period of

DLT code | ] ]
handling time suffices for many attacks.
native >mart f « Hash power can be rented.
transactions contracts | _
and smart contract * Some attacks have high chance

execution

of success even with less than
50% of network computational

Consensus
algorithm
vulnerabilities
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6. Smart contract vulnerabilities
* Bugs and deviations from intended

functionality.
DLT code | .
handling * Platform or programming language
native >mart ? vulnerabilities.
transactions contracts '

and smart contract  Malicious code.

execution

Consensus
algorithm L _
vulnerabilities Responsibility: Designers and developers of smart
contracts.
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Smart contract vulnerabilities
Bugs and deviations from intended

functionality.
DLT code
handling |
native >mart f Have you ever used software that worked
transactions contracts ;
and smart contract perfectly?

execution

Consensus algorithm

Consensus
algorithm
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Blockchain-Side Vulnerabilities

Smart contract vulnerabilities
Bugs and deviations from intended

functionality.
DLT code
handling |
native >mart f Have you ever used software that worked
transactions contracts |
and smart contract perfectly? Even worse...
SXCCHHON Critical nature of smart contracts should

require experienced software engineers

using robust engineering practices...

Consensus
algorithm
vulnerabilities
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Smart contract vulnerabilities
Bugs and deviations from intended
functionality.

DLT code
handling

native Smart Have you ever used software that worked

transactions contracts |
and smart contract perfectly? Even worse...
St ' Critical nature of smart contracts should

require experienced software engineers
using robust engineering practices...
But small size of smart contracts means

Consensus many are developed by inexperienced

algorithm

vulnerabilities programmers.
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EOS DApp Smart Contract Exploit Pays Out $200K to

Hacker rked

:z Sam Town - Sep 16,2018 - 1min read

Smart contract Weaknesses in EOS-based gambling dApp EOBet have allowed hackers to manipulate the ly IOUId
outcome of blockchain dice rolls, capturing 126,000 EQS in just 36 hours. |eers
An official announcement from EOSBet explains the mannerin which the attack Wwas executed—by g
exploiting a flaw in smart contract code, the hacker was able to place bets without transferring EOS to the nea nS
contract, while stil| capturing payouts from successful predictions,
= nenced
Consent ~werepos- e — | e
algorith . programmers.
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Smart contract vulnerabilities
Platform or programming language

vulnerabilities.
DLT code
handling |
e e | The tools should deter, not foster mistakes.
transactions contracts |
and smart contract :
eXecution Alas, few smart contract platforms and

programming languages have been

developed by the right experts.

Consensus
algorithm
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Smart contract vulnerabilities
Malicious code.
DLT code | i .
handling Purposefully introducing obfuscated means
hative Smart ’ of achieving unexpected behavior.

transactions contracts
and smart contract
execution
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Smart contract vulnerabilities

Malicious code.
DLT code | . .
handling Purposefully introducing obfuscated means
native >mart f of achieving unexpected behavior.
transactions contracts ;
and smart contract '
EXCCHEON Treat the developer as an adversary, not an
ally.
Consensus
algorithm
vulnerabilities
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contracts

Vulnerabilities
in DLT node
software

1. Node software vulnerabilities
* Taking down nodes through known
oIt code . vulnerabilities to perform 51%
handling attack.

native Smart

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Responsibility: DLT developers and miners.
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Unpatched Ethereum Clients Pose 51%
Attack Risk, Says Report

of the network becomes easier.
unlike in other pieces

of nodes, controlling 51%
security concern for blockchain nodes (

benefit from a crash).”

“|If a hacker can crash a large number
e crashes are a serious

Hence, softwar
es not usually

of software where the hacker do

——
Consensus
algorithm

vulnerabilities

Responsibility: DLT developers and miners.
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contracts

Vulnerabilities
in DLT node
software

8. Smart contracts and consensus
* Transaction reordering

vulnerabilities.
DLT code

handling
native Smart

transactions contracts
and smart contract
execution

Consensus algorithm

Consensus
algorithm
vulnerabilities

Responsibility: Smart contract designers.
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The crypto world's latest hack sees |
Bancor lose $23.5M

Jon Russell @jonrussell / 9:31 am CEST July 10, 2018

E] Comment

transactif
and smart cq

- Bancor, a Crypto company that touts a decentralized exchange Service, ‘

has lost some $23 5 million of Cryptocurrency tokens belonging to its

users following a hack.
Con!

algorithm . . —
vulnerabilities

Cr——

Responsibility: Smart contract designers.
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And this is but the tip of the iceberg...

e Various other known attack possibilities over the
configurations shown.

* And these are but a subset of configurations...
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And this is but the tip of the iceberg...

e Various other known attack possibilities over the
configurations shown.

* And these are but a subset of configurations...
* So what can we do to address these risks?



Malta Digital Innovation Authority
Increasing User Trust and Protection in DLTs

* Independent Systems Audit approach being taken by the
Malta Digital Innovation Authority.

* DLTs and smart contracts may be registered with the MDIA.

Blueprint

Systems Auditor Functionality
Applicant Systems Auditor Report MDIA Certification

Application



Malta Digital Innovation Authority
Increasing User Trust and Protection in DLTs

* The MDIA does not evaluate the technology itself, but rather licenses Systems
Auditors who can do so.

* Theirrole is to apply due diligence to the technology, ensuring that:
* Appropriate system design and architecture
* Experience and processes in the development team
* Appropriate security measures in place
* Appropriate quality assurance processes
 The software really functions as documented in the blueprint
* Appropriate measures in place as required by the law and MDIA

 Subject matter experts appointed by the SAs sign off each report section, with a
concrete opinion about the ITA.



Malta Digital Innovation Authority
Increasing User Trust and Protection in DLTs

* Certified Innovative Technology Arrangements provide higher levels
of assurance:
* The claimed functionality is documented in the blueprint in English.
 Applicant due diligence will be carried out by MDIA.
* Technical due diligence provided by Systems Auditor’s report.
* |ldentifiable known legal entity (the applicant) who can be held liable.
* Information is stored on a Forensic Node in case investigation is required.

* There is some degree of power-of-intervention which may be requested
from a Technical Administrator.

* English description in the blueprint prevails over implementation.



Malta Digital Innovation
Authority

www.mdia.gov.mt

gordon.pace@um.edu.mt




